If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-110=0
a = 1; b = 0; c = -110;
Δ = b2-4ac
Δ = 02-4·1·(-110)
Δ = 440
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{440}=\sqrt{4*110}=\sqrt{4}*\sqrt{110}=2\sqrt{110}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{110}}{2*1}=\frac{0-2\sqrt{110}}{2} =-\frac{2\sqrt{110}}{2} =-\sqrt{110} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{110}}{2*1}=\frac{0+2\sqrt{110}}{2} =\frac{2\sqrt{110}}{2} =\sqrt{110} $
| -6-4x=-58 | | x-9-5=12 | | 67=8x-93 | | 3k=310 | | 39=23.4+4.5x | | 150-1.5x=20-2.5x | | 31^2+x^2=481^2 | | (42)+(75)=(6x+15) | | 3p-2=-5 | | 39=23x+45 | | 5x-7/3=11 | | h5–5=13 | | h/5–5=13 | | 5j+1=9+4j | | a-78=99 | | 2x^2-13=20=(2x-5)(x-4) | | 21=y–9y | | y+98=121 | | 19=6f+1 | | 21=y–9y= | | 12k=240 | | -5x+9=8x-14,4 | | q+6=14q= | | -5(x+10)^7/2=-390,625 | | 3(3+5w)=5(w+1)=12 | | 8c+14=94 | | 5x/2+20=180 | | -5(x+10)^7/2=-390,635 | | 3x+33=4x=8 | | 2e–1=11 | | 8r=152 | | d/3+1=25 |